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Abstract

In these notes, we provide very detailed proofs and algebra of some of the re-
sults in the Supplementary Appendix to the paper.
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T.1 Detailed proof of Proposition S.1

Proposition:

There is a unique function U : b(.) x X x R x R — R satisfying equation (4).
Proof.

Step 1: If Assumptions S.2 and the boundedness condition in Assumption S.3 are satis-

tied and if k"¢ < 1, there exists a unique function Up, € U, that solves equation (S.10).

Proof of Claim: Assumptions S.2 and S.3 and ~"( < 0 ensure that we can apply Lemma
5 in Alvarez (1994) (p.37).

e Thatis, given U/ € Up, define the operator JU by
(TU)() = Bup(rS; — B()w,, N™)
+U (N, up (we( N +B(.)) = Sis1 =0 Ny NI UL D1 Wit o))

e Up is complete, i.e. given {U;}, a Cauchy sequence with if; € Up,3U € Up such
that ,||U; —U|| — 0 as i — oc.

To see this, first define U, then show thati/ € Up.

- Let U = limY; pointwise, which is well-defined since {¢/;} is Cauchy.
Since U;(zp) — U(zp),Vzp € I p, given ¢ choose i big enough so that
Vap € Up, [Us(zp) —U(zp)|/||zpl[}; < 6.
Hence, , [[U; — U|| = sup{[ti(zp) — U(zp)|/llzp|l}, 2p € Ip} — Oasi — oc.

-UeUp:

x| |U]| < oo

given 9, choose i large enough so that

Vap € Ilp, [U(zp)| < Ui(zp)| + dl[zpl[}-

Since U; € Up, let B; = ,||Ui|| < oo and note that

Vap € llp, [Us(zp)| < Billzpl[:-

Hence, for i large enough,

Vap € I, [U(zp)| < (B; +9)||zpll}-

Hence, ,|U|| = sup{[U(zp)|/||zpl[} < (Bi +6) < oo
* U continuous at zp € Ilp:

need to show that for any § > 0,34 > 0 such that if [|zp — ypl|; <, then
U(zp) —U(yp)| <&



Given ¢ and zp, choose ¢ big enough such that

U = Ul < (§/4)/|zoll7,

and choose ¢ such that

if |lzp —ypll; < 6, then [Ui(zp) — Ui(yp)| < &/4and (|lyplli/|lzpll}) < 2.

Hence, we have

(U(zp) —U(yp)| < [U(zp) —Ui(zp)|+|Ui(zp) —Ui(yp)|+ [Ui(yp) —U(yp)|
< [t =Ull ||zpll; + Ui (zp) —Ui(yp) |+ Ll1U: = U [lypllX
< &/A+ &[4+ (E/Dlyplli/Nzpll) < &/4+E/4+E/2=¢.

x Uish.od. v:

U(A\zp) — NU(zp)| < [U(Azp) — Ui(Azp)| + N [Us(zp) — U(zD)|-

For any &, choose ¢ big enough so that

U(Azp) —Us(Azp)| < §/2and [Us(zp) —U(zp)| < (£/2)/N”

Hence, |U(Azp)—NU(zp)| < &. Since { was arbitrary, U(Azp) = NU(zp).

Hence, 4 € Up.

Hence, Up complete.

OJZUD%UDl

(JU)(.) is continuous because up and ¥, are continuous;

(JU)(.)is h.o.d. v:
(TU)Azpr) = up(COAz Dy, A prst), AN?)

+Wp [N, up(C™(Azpt, Tpet1), N™) + U(AZpry1)]-
which can be done because the constraint in the definition of I1(xpg, wy, ) is
h.o.d. 1.

Since Cp h.o.d. 1in (zp¢, Tpis1), We get
(JU)(Azpr) = UD(Aéo(ﬁDt7 Tpis1), ANY)
FU AN, up(AC™ (@, Tper ), AN + UM pis )]

Since up and U are h.o.d. v and ¥p is h.o.d. v in the sense of Assump-
tions S.2.

(JU)(Azpi) = N (up(C°(2pt, a?th), NY)

+VUp[N, up(C™(@pt, Tpes1), NI*) +U(2Di41)])
(ju)(Ath) = )\V(ju)({’ém)-



- || TU|| < oo
By Assumption S.3, 3B such that
Vy: € Up(ye), [TU(ype)| < B{(lypille)” + (lypesill2)” + [U(ype1) |}
By definition of , &”(||yp:l|r)” > (||[ypt+1]|r)”. Hence, we have
Yy € Up(ye), [TUYpe) | < B{(lypel[)" (1 + £") + [U(yp,.. )|}
Let zpo = th//ﬁt, i.e. ypirs = K'xps. Then, since JU(.) h.o.d. v and 1T h.o.d.
1, we have
Vzpo € Ip(wo), ()| TU(zpo)| < B{ (") ([|poll)” (14£")+ (k") U(z o) }-
Divide both sides by (x”)*||zp:||% to get
|Tu( $D0)| zpollE v o U(Do)
< B{URBLE (1 4 w7) + () i |}

Vollzoell — llzpell% llzpellk

v;EDO € HD(I'Q)
Since, £ > 0 implies ||zp:|| = ||zpol| e, We get

JU(x
LD < B{(|[apol[£)" 11 + &) + (5)

 lzpell%

Since U € Up, |U(xpo)|/||zpolle < oo.

[U(zpo)
[lzpolle }

VQDO & HD(IO)

Hence, Vxpo € Xp,Vaepo € Up(zpo), | TU(zpo)|/||zpt||Z < 0o and
|| TU| = sup{(|TU(zpo)|/||zp:ell} : po € Xp} < o0.

e 7 is a contraction of modulus (.

Given a > 0 and U € Up, define (U + a)(xp) = U(zp) + al|zpl|]’. Note that
(u + a)() e Up.

Lemma T.1 (Modified Blackwell) Let M : Up — Up, letU,G € Up,.
If (i) M is monotone, i.e. U > G = MU > MG and
if (ii) M discounts, i.e. M (U + a) < MU + ba,

then M is a contraction of modulus 6.

Proof. The proof is standard except for the definition of (I + a)(.). See Alvarez
(1994) (Proposition 3). ]

- J is monotone: follows immediately from Assumption S.2(b).
— J discounts:
JU+a)(zp) = UD(éo(l’Dt, Tpis1), N)
+Wp[Ny", UD(C (pt, Tpes1), N*) + (U + a)(zpis1)]
By the definition of (U + a)(.),

T-3



JU + a)(zpe) = up(C°(zpt Tpes1), NY)
+U [N up(C™ (xpr, Tpia), N AU ps) +al |2 i ][]
Since, k > 0 implies ||zp:||Z = ||zpo||r and since ¥, discounts, we get

j(u + @)@Dt) < uD(CO(:C\E,Dta fBDt+1)> Nto)
+W [N up(C™ (xpr, Tpea), M) +U(zpr)] + all | zpol |5
T U+ a)(zpe) < (TU)(zpe) + Callzpol |l = (TU)(@pe) + Callzpi |
= (JU + Ca)(zpy)

Hence, J discounts.

Hence, 7 is a contraction of modulus (.
Hence, J has a unique fixed point, Up, = JU3,.

Step 2: Given U, for all zy € R?, 2o € I(z0, wo, 7o), define

UB(%Dt; Wy, Tt)
(N?)Y

U(2;we,11) =

where zp; = NP (x4, 1).

e Claim i: U° solves equation (5.3).

Proof of Claim i:

Up(zps; we, 14)
(NG)
_ Bup(riS, — B(Jwi, N/
a (N?)
W (N, w(w (N + B(.) = Sie1 — 0N/ + U (Zper1; Weer Tr41))
(N?) ‘

UO(%?wmft) =

+

By definition of U° and up,

BN ul[reS: — B(Jwl/NY)
) i
U (N7, (N7 ufun (NP + B)) = Seen — 0N /NI + (N2 ) U (s wess 7o)
" N7) |
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Since Ny, = N/ = N} ]]VViT = N/ny_1, Up h.o.d. v and by definition of ¥, S; and

By

Bu([rS: — B()w]/Ny)
(NY) N
U p(ne—1, (ne—1)"{ulfwe(N{" + B(.)) = See1 — 0N /NT) + U°(Z415 Werr, 1441) )
! (Ne)”

— (Vp)

= Bu([rS: — B(-Jwi]/N?)
U (e, ul[wr (N + B()) = Spar = ONFL] /N + U (41 Wi 1141)
= Bulres — wine—10(.)) + W(ne1, u(we(1 +0(.)) = ser1 — One) + U (@115 Wear, Te41))-

Hence, U° solves equation (S.3).

o Claim ii: U° is unique.
Proof of Claim ii: Suppose there was another function, U° that solves equation (5.3).

Then U? = (N°)*U° would be different from U¢, but solve equation (5.10): a con-

tradiction since U, is unique.

Step 3: Given U?, for all z, € R?, zo € II(xo, wo, 1) and for b, = g(xt, Tyy1; Wy, 1), define
U™ (b, 243w, 11) = u(w(1+ b)) — Sep1 — Ong) + U2 (Ze11; Weer, Tegn)-

o Claim iii: U™ solves equation (4).
Proof of Claim iii:

Using equation (5.3),

= w(we(14 b)) — sp01 — Ong) + Bu(rep1se1 — wepaneb(.))
FV (ng, u(werr (14 6()) = Sera — Ongyr) + U°(Teg2; Wea2, Tr42)).

Since by = b(iﬂtﬂ, Tiyo; Wiy, wt+2)/

= u(wt(l + bt) — St+1 — Qnt) + ﬁu(rt—l—lst—i—l — wt+1ntbt+1)

FU (g, w(wes1 (14 bepr) = Sev2 — Onerr) + U%(Teg2; Wera, Ter2)).-



By definition of U™,

= w(w(1 4 b;) = sp41 — Ong) + Bu(riiserr — Weranibepr) + W (g, U™ (begrs i1 Wern, g )-

Hence, U™ solves equation (4).

o Claim iv: U™ is unique.

Proof of Claim iv: Suppose there was another function, U™ that solves equation (4).
Then (N]f+1 = U™ — u(wy(1 + b;) — s.11 — On,) would be different from U° but solve

equation (5.3): a contradiction since U? is unique.

T.2

Detailed proof of Proposition S.2

In this section we provide the details for the proof of Proposition S.2. For necessity of

equations (5.22) and (5.23), we closely follow the arguments in Alvarez (1994), Prop. 8.

For sufficiency of equations (5.22) and (5.23), we closely follow the proof of Theorem
4.15 in Stokey, Lucas, and Prescott (1989), p. 98.

Remark 2 Note that Step 1 in Proposition S.1 can be used to show that U}, is uniquely defined

through equation (S.19).

Proposition:

If Mp = Fi, any sequence zpy € I1p(zpg) is optimal for the problem in Definition S.4 if

and only if it satisfies the intra-temporal allocation condition (5.21), the Euler equations
(5.22) and the transversality condition (5.23).
Proof. Necessity: Suppose an allocation attains the sup in Definition S.4, U5 (zpo)

where U = Uy by Lemma S.3 and where B p(.) is defined in equation (S.17). Then,

since U is strictly increasing, concave and differentiable by Lemma S.4, the following

conditions hold necessarily:

B :

K

N™

/

Qup(C°, N°)  dUp(N™, up(C™ N™) + U}) Qup(C™, N™)

B 9Co oU 9C™ + )\B/MP
Qup(C™,N™) _ 9U}

oCcm - 0K’
eéuD(Om,Nm) _ 9Up

oCm ON™



where the first equation is equation (S.20) for z = U},
The envelope conditions for the Pseudo-Planner are given by

Uy ﬂauD(co, N°)

K 5k oce 1K
. OUs  Oup(C° N°)
N aNo_ﬁ ONe
. OUs  Oup(C® N°) OV (N™ up(C™, N™) + U})
N oNm = goe U= Mp)+ ON™
OV (N™ up(C™, N™) + U}) Oup(C™ N™)  dup(C™ N™) OUS
M
* o0 P ocm T anNm T aN
Oup(C° N°)  OUp(N™, up(C™ N™) +Up) dup(C™, N™)
—| B — bMp
oC° ouU oCm

Substituting out % and setting Mp = Fy, we get the conditions in (5.21) and (5.22).

To show that the transversality condition must hold at an optimum, consider the fol-
lowing claim.

Claim 3 For any feasible sequence, x p;, that follows x po, we have ('U%(xp;) — 0as t — oo.

Proof of Claim: Using Assumption S.2(e) (i.e. Assumption S.3), using ||z p:| | < (K*)!||zpol|E
(by Remark 1), the fact that x > 0 implies ||zp¢||”, = ||z po|| g, knowing that ,||Up|| < oo
(by Remark 2 and Proposition S.1), multiplying by ¢* and using (x” < 1, the result
follows.

In particular, ('UZ™ (xp;) — 0 for any feasible z p; starting from zp. But Ug™ (xp;) =
U (xpy). Since Up'(xpy) is hod v, we have:

aUO*(.fEPt) aUO*(.I’Pt) aUO*(.I’Pt)
Uo* — Pt K Pt Nm™ Pt o
vUp (@r) = = Kot —gnm M o N
Hence,
8U0*(xpt) 8U0*(.77Pt) aUO*(.fEPt)
t Pt Pt m Pt 0
K N, —— N, )
¢ K, t+ ONp" ;+ IN? ;| —0ast — o0

Using the envelope conditions as well as the Euler equations, we get the transversality
condition in (5.23) as desired.

Sufficiency: Suppose x5, satisfies equations (5.22) and (5.23). Define
Dy = Up(zp,) — Up(zp)
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some zp; € IIp(xp:). All we need to show is that Dy > 0, Vapg € I1p(xpg). By concavity

of up(o,.), ¥p and up(m,.) we can write Again, by concavity of up(m,.), we have
Dt > Et + Dt+l

where =, contains a bunch of utility derivatives evaluated at } multiplied by (2}, —
xpt). Sequentially using this inequality by substituting for D,,; from ¢ = 0 (with the

OV p(s,*)
ou

-1
standard convention that [] = 1) gives:
5=0

T t—1 T
. oV p(s,*) 0¥ p(s,*)
Dy > 1 { —— | E — 7 }
0> lim Z(H v | B =5 ) Pra
s=0 s=0

Since the initial condition is given, we have =}, = zpy. Hence, several terms disappear

in t = 0. Rearranging terms over time and grouping by time period (as opposed to
age), it is straightforward to see that most of =, cancels using equation (5.21). What

remains is:
T

. a\IJD(Sa* ) 8uD(Cm*v Nm*) * mx* m

Dy, > _Tlgréo{ (81:[0 U * { 8(@5?* T (K7y1 — Kry1) + 0(N7Y — Nitq))
Oup(CF 1, N5 o o
a?V;’l* | SR - N
+
T
. OV p(s,*)
e (H T) Dre
>

T
: OV p(s,*) Oup(CF* NIy - Qup(CY 1, N .
B Tlgrolo{ (sl_[() oUu * |: ac%?}* (KT+1 + 9NT+1) + 5 aNTO:,:rl T+1] }

T
. 0¥p(s,*)
i, (H T) Pro

where the last inequality follows from the monotonicity of ¥ and up.
Using the EE for K, we get:

T
. oVp(s,*) é\’UD(C%* 1 N7 1) é\’UD(C%/):'F 1 NE 1)
D > 81 { ) |: + + F K N + + 0% ]}
0 = 8 fim <HO ou )" acer et (B +ONF) + =5 o T+1

T
, OUp(s,*)
A (H T) P
This almost immediately leads to the result using Claims 3 and 4.
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Claim 4 ‘N'Dé#<§<l

Proof of Claim: By Assumption S.2(c)., one can easily show (taking derivatives wrt A
and setting A = 1) that:

8\IID(Nm,U)Nm OVUp(N™ U)

N y— U = vUp(N.U). (T.1)

By Assumption S.2(d), ¥p discounts at rate ¢ < 1. Using the homogeneity property in
equation (T.1) and taking selective limits for ¢ — 0 in the discounting inequality, we
get the desired result.

Using Claims 4 and then 3, we get that the second term converges to 0. Using
Claim 4, it then follows from the transversality condition in equation (5.23) that the
tirst term goes to 0 as well. Hence, D, > 0. [ ]

T.3 Algebra details on the equivalence between
equations (S.21) to (5.23) and equations (8) to (11)

Note that
up(C,N) = N"u(C/N)
Oup/0C = N*~1u/'(c)
Oup/ON = N" Y (vu(c) — cu'(c))
Up(N™ up(C™ N™) +Ug) = U(N™, (up(C™,N™) + U )/(N™))
= W(N°n, (N™)"(u(c™) + U) /(N™)")
= (N°)“W(n,u(c™) + U
OUp/ON™ = W, (N™, (up(C™, N™) + Up") /(N™)")
Wy (N™, (up(C™, N™)+UR") [ (N™)" )w(N™) ™ up(C™, N™) +Ug")
= (N)" =1, (n, u(c™) + U
—(N°)" Wy (n,u(e™) + U )w(N™)"Hu(e™) + U)
= (N (W, (n, u(c™) + U) — Uy (n, u(c™) + U on=Hu(c™) + U))
OUp /U = (N™) Uy (N™, (up(C™, N™) + Ug")/(N™)¥)
= (N (N™) Wy (n,u(c™) +U) = n~"Wy(n, u(c™) + U)
Ap = (N) " Ing

Intra-temporal allocation condition:
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Using this, equation (5.21) becomes:
BIND) ' (¢f) = () "W (NF")"~Hd (6) + (V)" Ao 1/ Fove

By Y (cf) = (ne—1) " Wond' (6) + Apeny )/ Five
Bne 1 (c]) = Wy (ne1, Uu' (") + No/ Five
Using the firm’s optimality, this boils down to equation (8).

Euler Equations:

Equations (5.22) become:

(NF) = () = BINE)" ' (60 Freenn
O(NT™)" 1 () = (N) (W1, Upgr) — W (ne, Uppn)vny ' Uppa)
+n; "Wy (ng, Upgr)
*[FNtJrl(Nﬁﬂyilu/(ctH) (Ngl)uil(’/u(cﬁl) - cﬁlu/(cﬁl) + B(Vu(cfH) - cf+2u/(ct°+2))]

N (N{11)" " g "y
Dividing both sides by (N;*)"~! in both equations gives:

u'(c") = Bu’(c§+1)FKt+1
Ou'(c}") = Wy (ng, Upr) — ny "Wy (ng, U )v(u(cfyy) + UP)
+n;1\PU("ta Ut+1)[FNt+1UI(CZLr1) + (VU(C?L) - Cﬁlu/(cﬁl) + B(VU(C?H) - Cto+2ul(0?+2))]

_)\b,tJrln;lbt-l—l
The first equation boils down to equation 6. For the second, let’s cancel some terms:

‘9“/(0?1) =W, (ng, Upy1) — n;lIIfU(nt, Ut+1)VUfi2
+nt_1‘IIU("ta Ut+1)[(FNt+1 - cﬁl)u’(cﬁ_l) + 5(VU(C§+2) - C?+2UI(C§+2))]

-1
—Abi+1My by
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Using the budget constraint when young gives:

HU/(CT) = U, (ng, Up1) + n;l\IlU(nb Ut1)
*[(5t+2 +0ng 1 — bt+1wt+1)“,(cﬁ1) + B(VU(C?H) - C§+2“,(C?+2)) - VUf+*2]

-1
—Abtr1my byyg

Using the equation we derived from equation (5.21)

QUI(CT) = \Iln(nta Ut+1) - nfl(ﬂntul(cgﬂ) - )\b,tJrl/FNtJrl)btJrlthrl
0 Oy (g, Upg)[(Se42 4 Onee)u' (681) + Bru(clys) — 4ot (¢f,)) — vUL)

-1
—Apt+17 by

Now, clearly, the terms in A\, ;1 cancel out because either the constraint is not binding

and Ay ;1 = 0 or it is binding and b, = b, ;.

Ou'(ci") = W, (ng, Upgr) — nflﬂntul(cto+1)bt+1wt+1

1y Oy (ng, Upin)[(se42 + One)u'(cfpy) + Blrulcdys) — ot (cfys)) — VUL

We know, from the envelope condition, that

(1) OUpy15/ON° = BOup(o,t +2)/ON® = (N{,)" ' B(ru(cf,s) — o' (cs))
and, from the homogeneity of Uy, that

(2) aU;t+2/aNf+2 = VU;t+2/NtO+2—(0U;St+2/3Kt+2)Kt+2/Nf+2—(0U;t+2/aNﬁ_2)NH_Q/N&Q
Or, using the FOCs for K and N,

" ° « ° Oup (Cl N[ ou LN
(2) OUpy 19/ ONYy = VUpy o/ Nfys — <%> Sty2 — (%) 041
= (Nto+2)V71[VUf:2 - u/(cﬂ_l)(ng + 0ngi1)]

Hence, B(vu(ct,,) — ot/ (1)) = vUZ — v/ (cih) (See2 + Onega).

That is, the second term on the RHS cancels out and we get equation (7).

Transversality condition:
Using the relationships in the beginning of the section and dividing by Ny, equa-
tion (5.23) becomes:

CHND )"/ (ef) Fice (K + ONT™) + (vulef) — e’ (¢]))Nf] — 0

t—00
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Dividing by (N?)”,
CH () Free(s¢ + Ong_q) + vu(c?) — cfu/(cf)] i 0
Using the budget constraint when old:
C' ((Freky — beFne)ne—1) (Freed — biFne)ng_q) + vu((Freky — b Ene)ng_1)] e 0

That is, we get equation (11).

T.4 Detailed proof that U} is differentiable (Lemma S.4)

T41 Uj(Kp, NP, Np; Mp) differentiable in Kp > 0

Define
G(A) = max {BU(C%, Np) + Wp[N, U(C™, Ny) + Up(wp(wps Mp): Mp)])
subject to
C™ < Mp(NE + B) — N (xp; Mp) — K* (xp; Mp),
Co < F(A,Ng) — Mp(Np' + B),
B > Np'b
Note that:

e for A= Kp >0, F(A) = U]*D(KP,NIT,N](;,MP)
o (K (xp; Mp), No¥ (xp; Mp)) € Tp(A+h, NB, N&: Mp),
o (Ki(xp; Mp), No¥ (xp; Mp)) € Tp(A— h, N&, N%; Mp) for h small enough

Oup(C°,N°)

ace— |como = )

(since, at an optimum, C° > 0 because
o G(A+¢e)<Up(Kp+e, N N2, Mp),Ve € [—h,h],
e since up is strictly concave and ¥, weakly concave, F is strictly concave,

e since up and V¥ p are differentiable, I is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and Prescott
(1989), Theorem 4.10, p.84) to get that

8U1‘?,*(xp, Mp)
0Kp

auD(CO, ng)

= GI(A) = g

> 0 (T.2)
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T4.2 Up(Kp, Np, Np; Mp) differentiable in N7 > 0

Define
G(A) = max {Bup(C7 A)+UpINE, UC™, NE)+UR (KR (ep: M), Np (ap: Mp), Ni))}
subject to
C™ < Mp(NE + B) — ONp¥ (vp; Mp) — K* (xp; Mp),
C° < F(Kp, N§) = Mp(Np + B),
B > Np'b
Note that:

o for A= N% >0, G(A) = Up(Kp, N, N%: Mp),

e since I'p is independent on Np,
(K5 (xp; Mp), N3 (zp; Mp)) € Tp(Kp, N&, A+ h; Mp),
(Kp (xp; Mp), N5 (2p; Mp)) € Tp(Kp, Np', A — h; Mp),

o G(A+¢) <Up(Kp,Np',Np +¢; Mp),Ve € [—h,h|,
e since up is strictly concave, G is strictly concave,
e since up is differentiable, GG is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and Prescott
(1989), Theorem 4.10, p.84) to get that

@UIO;* ([Bp; Mp)
ONg,

8uD(CO, NIO;.)

= G(A) = pE

> 0. (T.3)

T.4.3 Up(Kp, NJ, Ng; Mp) differentiable in N} > 0
Define
G(A) = cg}gi{,B{BuD(Co’ N&)+Up[A/Mp,up(C™, A/Mp)+Us(K5 (xp; Mp), N (zp; Mp), A/Mp)]}
subject to
C™ < A+ MpB — ONE* (xp; Mp) — K* (xp; Mp),
C° < F(Kp,A/Mp) — (A+ MpB),
MpB > Ab.

Case (i): MpB > Ab.

Note that:
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o for A = MpN® >0, G(A) = U(Kp, N&, N%; Mp).
e for h small enough, MpB > (A + h)band

(K3 (zp, Mp), Np* (xp, Mp)) € Tp(Kp, (A+ h)/Mp, No:; Mp),

Aup(C°,N°)

(since, at an optimum, C° > 0 because —35; Co—0

g OO)/
e for h small enough, MpB > (A + h)band

(K% (xp, Mp), N3* (xp, Mp)) € Tp(Kp, (A+ h)/Mp, No; Mp),

Jup(C?,N°)
9C°  |Co=0

o G(A+¢e) <Up(Kp, NB +¢/Mp, No: Mp),Ve € [—h, b,

(since, at an optimum, C° > (0 because = 0),

e since up is strictly concave and ¥, weakly concave, G is strictly concave,

e since up and ¥, are differentiable in N and U}, differentiable in N°, G is
differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and
Prescott (1989), Theorem 4.10, p.84) to get that

@UIO;* (.CEP, Mp)

— G/(A)(dAJINT) = G'(A)Mp (TA4)
ONp
Oup(C°, N "
= 02N g o, ) — i)
G\IID 8\DD auD(Cm,N}.!‘) auD(Cm,N}.I‘) 8uD(CO/,N1%')
tonm o Mr——age Y onm tAane )

Ol', since FN(KP, Ngb) = Mp

@UIO;* (.CEP, Mp)

= G'(A)(dA/ANT) = G'(A)Mp (T.5)
ONT
oVp  0Vp  Oup(C™ NE)  Oup(C™, NZ)  dup(C®,Ng)
- M .
oNn T or M5 T anm AN 170

Case (ii): MpB = Aband A\ > 0.

Note that:

o for A= MpNP >0, F(A) = U (Kp, Ni2, N9 7).
e for h small enough, MpB = (A + h)b, \g > 0 and

(Kp(zp,2), Ng*(xp; Mp)) € Tp(Kp, (A+h)/Mp), N; Mp),

Oup(C°,N°)

(since, at an optimum, C° > 0 because =35 Co=0

= 00),
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e for i small enough, (Kp, (A — h)/w(Z), N}, € Aco (since Aco open) and

(K} (2p,7), Np*(2p, 7)) € Up(Kp, (A — h)/w(Z), Np; T),

Oup (C™,N™)

. . m o
(since, at an optimum, C™ > 0 because 90 (om—p =

00),

o G(A+¢)<Up(Kp,Np +¢/Mp,Np; Mp),Ve € [—h, h],

e since up is strictly concave and ¥, weakly concave, G is strictly concave,

e since up and U, are differentiable in N™ and U}, differentiable in N°, G is
differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and
Prescott (1989), Theorem 4.10, p.84) to get that

3U1%*(xp; Mp)

=G'(A)(dA/ANE) = G'(A)Mp (T.6)
ONp
Oup(C°, N m ov
= 5%(FN(KP,NP) — Mp(1+b) + 3751
8\DD auD(Cm,N}.I‘) 8uD(Cm,N1T) 8uD(CO/,N1%/)
g Mr—gem b+ = N
OI', since Mp = FN(KPyN]T)
8U1%*(xp;Mp) o 8\1/[) 8uD(Om,N}¥) 8uD(C°,N1%)
NI |l ou acm ¢ Mrb (17)
8\DD G\IID 8uD(Cm,N}.I‘) 8uD(Cm,N1T) 8uD(COI,N1%')
one T ar Mrgem T anw TN 170

[Note that the first term is —Agb and the rest is the same as in case (i).]

Case (iii): MpB = Aband A\g = 0.
Note that:

for A = MPN]T' >0, G(A) = UJ*D(KP,NJT', ng, Mp)

forand h > 0, MpB = (A+ h)band A\g > 0, i.e. we are in case (ii),

forand h < 0, MpB > (A — h)b, i.e. we are in case (i),

G(A+¢) < Us(Kp, NE +¢/Mp, No; Mp),Ve € [~h, 1],

Hence, we need to show that
lim OUp (xp;Mp) lim oUg* (zp;Mp)
h>0h—0  ONE i n<ohs0  ONE i
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. QU (xp; M . QU (zp; M
Note that lim “UEEPME) _ _ pyn ) pp g QEEEME)
h>0,h—0 P |éi h>0,h—0 P |4

oUg(zp;Mp)  __ OUR(zp;Mp)

Since, A\g — 0 as h — 0, we have ONT = N

|idi li

T.5 Detailed proof of Proposition S.3

Proposition:
Uy is differentiable with respect to the parameter b and the Pseudo Planner’s policy
functions are continuous in b. Therefore, household policy functions and equilibrium
prices are continuous in b.
Proof.
Let’s add b as a state variable with law of motion b’ = b.
We want to show that U} (zp; b, Mp) differentiable in b.
To do so, define
F(A)= max {BU(C°,Ng) + Wp[N.U(C™, NE) + Up(ap(ar, )]}
subject to
C™ < Mp(Np + B) — ON™ (zp) — K*(zp),
C° + Mp(Ng + B) < F(Kp, Np),
MpB > A,
Define b* € [—1, b] such that, given (Kp, N, N3),

auD (m7 Ip, l_)*>

oc™m

BauD(Ou IP?Q*) - a\I/D(N};L,UD(m, xP?Q*)

o0Ce oU +UP (IP(IP,Z_) )))

and define B*(zp, Fn(xp)) = Npb".
That is, the constraint is just binding. b" exists if OV /0U > 0. If not, only case ii is
relevant.

i. Case1: b < b".

Note that:

o for A= MpNpb, F(A) = Uj(xzp, b; Mp).

e for h small enough, zp s.t. b < b still holds for (A + h)

o (Kjp(xzp,b,Mp), Ny*(xp,b, Mp)) feasible for (A + h)
(since intertemporal constraint is independent on (b.))

° F(A+€) < UI*D(ZL’p, (A—f-ﬁ)/(MpNgL),Mp),v& S [—h, h]
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e Since up is strictly concave and ¥, weakly concave, I is strictly concave.

e Since up and V¥ p are differentiable in C, F is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and
Prescott (1989) , Theorem 4.10, p.84) to get that

aU]OD* ('CEP7 éa MP)
ob

— F'(A)(dA/db) = 0
|casel
ii. Case2:b>b".

Note that:

o for A= MpNpb, F(A) = Uj(xp, b; Mp).
e for h small enough, xp s.t. b > b still holds for (A + h)
o (Ki(xp,b,Mp), Ng*(xp,b, Mp)) feasible for (A + h)
(since intertemporal constraint is independent on (b.))
o F(A+¢e)<Up(zp,(A+¢)/(MpNP); Mp),Ve € [—h, h]
e Since up is strictly concave and ¥, weakly concave, I is strictly concave.

e Since up and V¥ p are differentiable in C, F is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and
Prescott (1989), Theorem 4.10, p.84) to get that

WECrRbAY)  _ payaan) = FOMNE (T8
= |case2

_ _BauD(O (xpéglj(xP»? NP) MPNIT
OVp  Oup(C™(zp, xp(xp)), Np)
oUu ocm

= MpNT\p

MpNT

iii. Case3: b=1"0",i.e. zp € Ayc,

Note that:

o for A= MPNJT'Q, F(A) = U;;(.CED,Q7 Mp)

e for and h > 0, we are back to case 1 for (A + h) and
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e for and h < 0, we are back to case 2 for (A + h).

° F(A + 8) < U;;(ZEP, (A + 6)/(MPNF), Mp),V& S [—h, h]
Hence, we need to show that

aU]OD*(xP7ba MP) aUIOD* (xp7bu MP)

lim = lim
h>0,h—0 al_) |casel h<0,h—0 al_) |case2
. UL (2 p,b,M
Since, Ag(zp, 25(zp), Mp) %Oash%O,wehave% =0

|case3

Hence, U is differentiable in b. Thus U} is continuous in b and by the Theorem of the
Maximum, the optimal policy functions, =}, are continuous in b. Therefore, using the
equivalence in Proposition S.5 equilibrium prices, w(z'(b)) = Fy(z}(b)) and r(Z'(b)) =

Fk(z3(b)), are continuous in b. ]
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