
Technical Appendix (online only) to
“Property Rights and Efficiency in OLG Models

with Endogenous Fertility”

Alice Schoonbroodt
The University of Iowa and CPC
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Abstract

In these notes, we provide very detailed proofs and algebra of some of the re-
sults in the Supplementary Appendix to the paper.
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T.1 Detailed proof of Proposition S.1

Proposition:

There is a unique function U : b̃(.)×X×R
∞
+ ×R

∞
+ → R satisfying equation (4).

Proof.

Step 1: If Assumptions S.2 and the boundedness condition in Assumption S.3 are satis-

fied and if κνζ < 1, there exists a unique function Uo
D ∈ UD that solves equation (S.10).

Proof of Claim: Assumptions S.2 and S.3 and κνζ < 0 ensure that we can apply Lemma

5 in Alvarez (1994) (p.37).

• That is, given U ∈ UD, define the operator JU by

(JU)(.) ≡ βuD(rtSt − B̃(.)wt, N
m
t )

+ΨD(N
m
t , uD(wt(N

m
t +B̃(.))−St+1−θtN

m
t+1, N

m
t )+U(x

˜Dt+1;w˜ t+1, r˜t+1)).

• UD is complete, i.e. given {Ui}, a Cauchy sequence with Ui ∈ UD, ∃U ∈ UD such

that ν ||Ui − U|| → 0 as i → ∞.

To see this, first define U , then show that U ∈ UD.

– Let U ≡ limUi pointwise, which is well-defined since {Ui} is Cauchy.

Since Ui(x˜D
) → U(x

˜D
), ∀x
˜D

∈ ΠD, given δ choose i big enough so that

∀x
˜D

∈ ΠD, |Ui(x˜D
)− U(x

˜D
)|/||x

˜D
||νκ ≤ δ.

Hence, ν ||Ui − U|| = sup{|Ui(x˜D
)− U(x

˜D
)|/||x

˜D
||νκ, x˜D

∈ ΠD} → 0 as i → ∞.

– U ∈ UD :

∗ ν ||U|| < ∞:

given δ, choose i large enough so that

∀x
˜D

∈ ΠD, |U(x˜D
)| ≤ |Ui(x˜D

)|+ δ||x
˜D

||νκ.

Since Ui ∈ UD, let Bi ≡ ν ||Ui|| < ∞ and note that

∀x
˜D

∈ ΠD, |Ui(x˜D
)| ≤ Bi||x˜D

||νκ.

Hence, for i large enough,

∀x
˜D

∈ ΠD, |U(x˜D
)| ≤ (Bi + δ)||x

˜D
||νκ.

Hence, ν ||U|| = sup{|U(x
˜D

)|/||x
˜D

||νκ} ≤ (Bi + δ) < ∞

∗ U continuous at x
˜D

∈ ΠD:

need to show that for any ξ > 0, ∃δ > 0 such that if ||x
˜D

−y
˜
D||

ν
κ ≤ δ, then

|U(x
˜D

)− U(y
˜
D)| ≤ ξ.
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Given ξ and x
˜D

, choose i big enough such that

ν ||Ui − U|| ≤ (ξ/4)/||x
˜D

||νκ,

and choose δ such that

if ||x
˜D

− y
˜
D||

ν
κ ≤ δ, then |Ui(x˜D

)−Ui(y
˜
D)| < ξ/4 and (||y

˜
D||

ν
κ/||x˜D

||νκ) ≤ 2.

Hence, we have

|U(x
˜D

)−U(y
˜
D)| ≤ |U(x

˜D
)−Ui(x˜D

)|+ |Ui(x˜D
)−Ui(y

˜
D)|+ |Ui(y

˜
D)−U(y

˜
D)|

≤ ν ||Ui−U|| ||x
˜D

||νκ+ |Ui(x˜D
)−Ui(y

˜
D)|+ ν ||Ui−U|| ||y

˜
D||

ν
κ

≤ ξ/4 + ξ/4 + (ξ/4)(||y
˜
D||

ν
κ/||x˜D

||νκ) ≤ ξ/4 + ξ/4 + ξ/2 = ξ.

∗ U is h.o.d. ν:

|U(λx
˜D

)− λνU(x
˜D

)| ≤ |U(λx
˜D

)− Ui(λx˜D
)|+ λν |Ui(x˜D

)− U(x
˜D

)|.

For any ξ, choose i big enough so that

|U(λx
˜D

)− Ui(λx˜D
)| ≤ ξ/2 and |Ui(x˜D

)− U(x
˜D

)| ≤ (ξ/2)/λν

Hence, |U(λx
˜D

)−λνU(x
˜D

)| ≤ ξ. Since ξ was arbitrary, U(λx
˜D

) = λνU(x
˜D

).

Hence, U ∈ UD.

Hence, UD complete.

• J : UD → UD:

– (JU)(.) is continuous because uD and ΨD are continuous;

– (JU)(.) is h.o.d. ν:

(JU)(λx
˜Dt) = uD(C̃

o(λxDt, λxDt+1), λN
o
t )

+ΨD[N
m
t , uD(C̃

m(λxDt, xDt+1), N
m) + U(λx

˜Dt+1)].

which can be done because the constraint in the definition of Π(xD0, wt

˜
, rt
˜
) is

h.o.d. 1.

Since CD h.o.d. 1 in (xDt, xDt+1), we get

(JU)(λx
˜Dt) = uD(λC̃

o(xDt, xDt+1), λN
o
t )

+ΨD[λN
m
t , uD(λC̃

m(xDt, xDt+1), λN
m
t ) + U(λxDt+1)]

Since uD and U are h.o.d. ν and ΨD is h.o.d. ν in the sense of Assump-

tions S.2.

(JU)(λx
˜Dt) = λν(uD(C̃

o(xDt, xDt+1), N
o
t )

+ΨD[N
m
t , uD(C̃

m(xDt, xDt+1), N
m
t ) + U(x

˜Dt+1)])

(JU)(λx
˜Dt) = λν(JU)(x

˜Dt).
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– ν ||J U|| < ∞:

By Assumption S.3, ∃B such that

∀y
˜
t ∈ ΠD(yt), |J U(y

˜
Dt)| ≤ B{(||yDt||E)

ν + (||yDt+1||E)
ν + |U(y

˜
Dt+1)|}

By definition of κ, κν(||yDt||E)
ν ≥ (||yDt+1||E)

ν . Hence, we have

∀y
˜
t ∈ ΠD(yt), |J U(y

˜
Dt)| ≤ B{(||yDt||E)

ν(1 + κν) + |U(y
˜
Dt+1

)|}

Let x
˜D0 = y

˜
Dt/κ

t, i.e. yDt+s = κtxDs. Then, since JU(.) h.o.d. ν and Π h.o.d.

1, we have

∀x
˜D0 ∈ ΠD(x0), (κ

ν)t|J U(x
˜D0)| ≤ B{(κν)t(||xD0||E)

ν(1+κν)+|(κν)t+1U(x
˜D0)|}.

Divide both sides by (κν)t||x
˜Dt||

ν
κ to get

∀x
˜D0 ∈ ΠD(x0),

|J U(x
˜
D0)|

||x
˜
Dt||νκ

≤ B{ (||xD0||E)ν

||x
˜
Dt||νκ

(1 + κν) + (κν)
|U(x

˜
D0)

||x
˜
Dt||νκ

|}.

Since, κ > 0 implies ||x
˜Dt||

ν
κ = ||xD0||E, we get

∀x
˜D0 ∈ ΠD(x0),

|J U(x
˜
D0)|

||x
˜
Dt||νκ

≤ B{(||xD0||E)
ν−1(1 + κν) + (κν)

|U(x
˜
D0)

||x
˜
D0||E

}.

Since U ∈ UD, |U(x˜D0)|/||xD0||E < ∞.

Hence, ∀xD0 ∈ XD, ∀x˜D0 ∈ ΠD(xD0), |J U(x
˜D0)|/||x˜Dt||

ν
κ < ∞ and

ν ||J U|| = sup{(|J U(x
˜D0)|/||x˜Dt||

ν
κ : xD0 ∈ XD} < ∞.

• J is a contraction of modulus ζ .

Given a > 0 and U ∈ UD, define (U + a)(xD) ≡ U(x
˜D

) + a||xD||
ν
κ. Note that

(U + a)(.) ∈ UD.

Lemma T.1 (Modified Blackwell) Let M : UD → UD, let U , G ∈ UD.

If (i) M is monotone, i.e. U ≥ G ⇒ MU ≥ MG and

if (ii) M discounts, i.e. M(U + a) ≤ MU + θa,

then M is a contraction of modulus θ.

Proof. The proof is standard except for the definition of (U + a)(.). See Alvarez

(1994) (Proposition 3).

– J is monotone: follows immediately from Assumption S.2(b).

– J discounts:

J (U + a)(x
˜Dt) = uD(C̃

o(xDt, xDt+1), N
o)

+ΨD[N
m
t , uD(C̃

m(xDt, xDt+1), N
m
t ) + (U + a)(xDt+1)]

By the definition of (U + a)(.),
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J (U + a)(x
˜Dt) = uD(C̃

o(x
˜Dt, xDt+1), N

o
t )

+ΨD[N
m
t , uD(C̃

m(xDt, xDt+1), N
m
t )+U(x

˜Dt)+a||x
˜Dt+1||

ν
κ]

Since, κ > 0 implies ||x
˜Dt||

ν
κ = ||xD0||E and since ΨD discounts, we get

J (U + a)(x
˜Dt) ≤ uD(C̃

o(x
˜Dt, xDt+1), N

o
t )

+ΨD[N
m
t , uD(C̃

m(xDt, xDt+1), N
m
t )+U(x

˜Dt)]+aζ ||x
˜D0||E

J (U + a)(x
˜Dt) ≤ (JU)(x

˜Dt) + ζa||xD0||E = (JU)(x
˜Dt) + ζa||xDt||

ν
α

= (JU + ζa)(x
˜Dt)

Hence, J discounts.

Hence, J is a contraction of modulus ζ.

Hence, J has a unique fixed point, Uo
D = JUo

D.

Step 2: Given Uo
D, for all x0 ∈ R

2
+, x
˜0

∈ Π(x0, w˜0, r˜0
), define

Uo(x
˜t
;w
˜ t, r˜t

) =
Uo
D(x˜Dt;w˜ t, r˜t

)

(No
t )

ν
.

where xDt = No
t (xt, 1).

• Claim i: Uo solves equation (S.3).

Proof of Claim i:

Uo(x
˜t
;w
˜ t, r˜t

) =
Uo
D(x˜Dt;w˜ t, r˜t

)

(No
0 )

ν

=
βuD(rtSt − B̃(.)wt, N

m
t )

(No
t )

ν

+
ΨD(N

m
t , u(wt(N

m
t + B̃(.))− St+1 − θtN

m
t+1) + Uo

D(x˜Dt+1;w˜ t+1, r˜t+1))

(No
t )

ν
.

By definition of Uo and uD,

=
β(No

t )
νu([rtSt − B̃(.)wt]/N

o
t )

(No
t )

ν

+
ΨD(N

m
t , (Nm

t )νu([wt(N
m
t + B̃(.))− St+1 − θtN

m
t+1]/N

m
t ) + (No

t+1)
νUo(x

˜t+1;w˜ t+1, r˜t+1))

(No
t )

ν
.
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Since No
t+1 = Nm

t = No
t
Nm

t

No
t
= No

t nt−1, ΨD h.o.d. ν and by definition of ΨD, St and

Bt

= (No
t )

ν
[βu([rtSt − B̃(.)wt]/N

o
t )

(No
t )

ν

+
ΨD(nt−1, (nt−1)

ν{u([wt(N
m
t + B̃(.))− St+1 − θtN

m
t+1]/N

m
t ) + Uo(x

˜t+1;w˜ t+1, r˜t+1)})

(No
t )

ν

]

= βu([rtSt − B̃(.)wt]/N
o
t )

+Ψ(nt−1, u([wt(N
m
t + B̃(.))− St+1 − θtN

m
t+1]/N

m
t ) + Uo(x

˜t+1;w˜ t+1, r˜t+1))

= βu(rtst − wtnt−1b(.)) + Ψ(nt−1, u(wt(1 + b(.))− st+1 − θnt) + Uo(x
˜t+1;w˜ t+1, r˜t+1)).

Hence, Uo solves equation (S.3).

• Claim ii: Uo is unique.

Proof of Claim ii: Suppose there was another function, Ũo that solves equation (S.3).

Then Ũo
D ≡ (No)νŨo would be different from Uo

D but solve equation (S.10): a con-

tradiction since Uo
D is unique.

Step 3: Given Uo, for all x0 ∈ R
2
+, x
˜0

∈ Π(x0, w˜0, r˜0
) and for bt = b̃(xt, xt+1;wt, rt), define

Um(bt, x˜t
;w
˜ t, r˜t

) = u(wt(1 + bt)− st+1 − θnt) + Uo(x
˜t+1;w˜ t+1, r˜t+1).

• Claim iii: Um solves equation (4).

Proof of Claim iii:

Using equation (S.3),

= u(wt(1 + bt)− st+1 − θnt) + βu(rt+1st+1 − wt+1ntb(.))

+Ψ(nt, u(wt+1(1 + b(.))− st+2 − θnt+1) + Uo(x
˜t+2;w˜ t+2, r˜t+2)).

Since bt+1 = b(xt+1, xt+2;wt+1, wt+2),

= u(wt(1 + bt)− st+1 − θnt) + βu(rt+1st+1 − wt+1ntbt+1)

+Ψ(nt, u(wt+1(1 + bt+1)− st+2 − θnt+1) + Uo(x
˜t+2;w˜ t+2, r˜t+2)).
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By definition of Um,

= u(wt(1 + bt)− st+1 − θnt) + βu(rt+1st+1 − wt+1ntbt+1) + Ψ(nt, U
m(bt+1, x˜t+1;w˜ t+1, r˜t+1).

Hence, Um solves equation (4).

• Claim iv: Um is unique.

Proof of Claim iv: Suppose there was another function, Ũm that solves equation (4).

Then Ũo
t+1 ≡ Ũm

t − u(wt(1 + bt)− st+1 − θnt) would be different from Uo but solve

equation (S.3): a contradiction since Uo is unique.

T.2 Detailed proof of Proposition S.2

In this section we provide the details for the proof of Proposition S.2. For necessity of

equations (S.22) and (S.23), we closely follow the arguments in Alvarez (1994), Prop. 8.

For sufficiency of equations (S.22) and (S.23), we closely follow the proof of Theorem

4.15 in Stokey, Lucas, and Prescott (1989), p. 98.

Remark 2 Note that Step 1 in Proposition S.1 can be used to show that Uo
P is uniquely defined

through equation (S.19).

Proposition:

If MP = FN , any sequence x
˜P0 ∈ ΠP (xP0) is optimal for the problem in Definition S.4 if

and only if it satisfies the intra-temporal allocation condition (S.21), the Euler equations

(S.22) and the transversality condition (S.23).

Proof. Necessity: Suppose an allocation attains the sup in Definition S.4, U∗∗
P (xP0)

where U∗∗
P = U∗

P by Lemma S.3 and where B̃P (.) is defined in equation (S.17). Then,

since Uo∗
P is strictly increasing, concave and differentiable by Lemma S.4, the following

conditions hold necessarily:

B : β
∂uD(C

o, No)

∂Co
=

∂ΨD(N
m, uD(C

m, Nm) + U∗′

P )

∂U

∂uD(C
m, Nm)

∂Cm
+ λB/MP

K ′ :
∂uD(C

m, Nm)

∂Cm
=

∂U∗′

P

∂K ′

Nm′

: θ
∂uD(C

m, Nm)

∂Cm
=

∂U∗′

P

∂Nm′
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where the first equation is equation (S.20) for z = U∗′

P .

The envelope conditions for the Pseudo-Planner are given by

K :
∂U∗

P

∂K
= β

∂uD(C
o, No)

∂Co
FK

No :
∂U∗

P

∂No
= β

∂uD(C
o, No)

∂No

Nm :
∂U∗

P

∂Nm
=

∂uD(C
o, No)

∂Co
(FN −MP ) +

∂ΨD(N
m, uD(C

m, Nm) + U∗′

P )

∂Nm

+
∂ΨD(N

m, uD(C
m, Nm) + U∗′

P )

∂U

[
MP

∂uD(C
m, Nm)

∂Cm
+

∂uD(C
m, Nm)

∂Nm
+

∂U∗′

P

∂No′

]

−

(
β
∂uD(C

o, No)

∂Co
−

∂ΨD(N
m, uD(C

m, Nm) + U∗′

P )

∂U

∂uD(C
m, Nm)

∂Cm

)
bMP

Substituting out
∂U∗

P

∂x
and setting MP = FN , we get the conditions in (S.21) and (S.22).

To show that the transversality condition must hold at an optimum, consider the fol-

lowing claim.

Claim 3 For any feasible sequence, x
˜Pt, that follows xP0, we have ζ tUo

P (x˜Pt) → 0 as t → ∞.

Proof of Claim: Using Assumption S.2(e) (i.e. Assumption S.3), using ||xPt||E ≤ (κν)t||xP0||E

(by Remark 1), the fact that κ > 0 implies ||x
˜Pt||

ν
κ = ||xP0||E, knowing that ν ||U

o
P || < ∞

(by Remark 2 and Proposition S.1), multiplying by ζ t and using ζκν < 1, the result

follows.

In particular, ζ tUo∗∗
P (xPt) → 0 for any feasible xPt starting from xP0. But Uo∗∗

P (xPt) =

Uo∗
P (xPt). Since Uo∗

P (xPt) is hod ν, we have:

νUo∗
P (xPt) =

∂Uo∗
Pt(xPt)

∂Kt
Kt +

∂Uo∗
Pt(xPt)

∂Nm
t

Nm
t +

∂Uo∗
Pt(xPt)

∂No
t

No
t .

Hence,

ζ t
[
∂Uo∗

Pt(xPt)

∂Kt
Kt +

∂Uo∗
Pt(xPt)

∂Nm
t

Nm
t +

∂Uo∗
Pt(xPt)

∂No
t

No
t

]
→ 0 as t → ∞.

Using the envelope conditions as well as the Euler equations, we get the transversality

condition in (S.23) as desired.

Sufficiency: Suppose x
˜
∗
P0 satisfies equations (S.22) and (S.23). Define

Dt ≡ Uo
P (x˜

∗
Pt)− Uo

P (x˜Pt)
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some x
˜Pt ∈ ΠP (xPt). All we need to show is that D0 ≥ 0, ∀x

˜P0 ∈ ΠP (xP0). By concavity

of uD(o, .), ΨD and uD(m, .) we can write Again, by concavity of uD(m, .), we have

Dt ≥ Ξt +
∂ΨD(t,

∗ )

∂U
Dt+1

where Ξt contains a bunch of utility derivatives evaluated at x∗
P multiplied by (x∗

Pt −

xPt). Sequentially using this inequality by substituting for Dt+1 from t = 0 (with the

standard convention that
−1∏
s=0

∂ΨD(s,∗)
∂U

= 1) gives:

D0 ≥ lim
T→∞

{ T∑

t=0

(
t−1∏

s=0

∂ΨD(s,
∗ )

∂U

)
Ξt +

(
T∏

s=0

∂ΨD(s,
∗ )

∂U

)
DT+1

}

Since the initial condition is given, we have x∗
P0 = xP0. Hence, several terms disappear

in t = 0. Rearranging terms over time and grouping by time period (as opposed to

age), it is straightforward to see that most of Ξt cancels using equation (S.21). What

remains is:

D0 ≥ − lim
T→∞

{( T∏

s=0

∂ΨD(s,
∗ )

∂U

)
∗
[∂uD(Cm∗

T , Nm∗
T )

∂Cm∗
T

((K∗
T+1 −KT+1) + θ(Nm∗

T+1 −Nm
T+1))

+β
∂uD(C

o∗
T+1, N

o∗
T+1)

∂No∗
T+1

(No∗
T+1 −No

T+1)
]}

+ lim
T→∞

(
T∏

s=0

∂ΨD(s,
∗ )

∂U

)
DT+1

≥ − lim
T→∞

{( T∏

s=0

∂ΨD(s,
∗ )

∂U

)
∗
[∂uD(Cm∗

T , Nm∗
T )

∂Cm∗
T

(K∗
T+1 + θNm∗

T+1) + β
∂uD(C

o∗
T+1, N

o∗
T+1)

∂No∗
T+1

No∗
T+1

]}

+ lim
T→∞

(
T∏

s=0

∂ΨD(s,
∗ )

∂U

)
DT+1

where the last inequality follows from the monotonicity of ΨD and uD.

Using the EE for K, we get:

D0 ≥ −β lim
T→∞

{( T∏

s=0

∂ΨD(s,
∗ )

∂U

)
∗
[∂uD(Co∗

T+1, N
o∗
T+1)

∂Co∗
T+1

FKT+1(K
∗
T+1 + θNm∗

T+1) +
∂uD(C

o∗
T+1, N

o∗
T+1)

∂No∗
T+1

No∗
T+1

]}

+ lim
T→∞

(
T∏

s=0

∂ΨD(s,
∗ )

∂U

)
DT+1

This almost immediately leads to the result using Claims 3 and 4.
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Claim 4 ∂ΨD(Nm,U)
∂U

≤ ζ < 1

Proof of Claim: By Assumption S.2(c)., one can easily show (taking derivatives wrt λ

and setting λ = 1) that:

∂ΨD(N
m, U)

∂Nm
Nm + ν

∂ΨD(N
m, U)

∂Nm
U = νΨD(N,U). (T.1)

By Assumption S.2(d), ΨD discounts at rate ζ < 1. Using the homogeneity property in

equation (T.1) and taking selective limits for a → 0 in the discounting inequality, we

get the desired result.

Using Claims 4 and then 3, we get that the second term converges to 0. Using

Claim 4, it then follows from the transversality condition in equation (S.23) that the

first term goes to 0 as well. Hence, D0 ≥ 0.

T.3 Algebra details on the equivalence between

equations (S.21) to (S.23) and equations (8) to (11)

Note that

uD(C,N) = Nνu(C/N)

∂uD/∂C = Nν−1u′(c)

∂uD/∂N = Nν−1(νu(c)− cu′(c))

ΨD(N
m, uD(C

m, Nm) + Uo∗′

P ) = Ψ(Nm, (uD(C
m, Nm) + Uo∗′

P )/(Nm)ν)

= Ψ(Non, (Nm)ν(u(cm) + Uo∗′)/(Nm)ν)

= (No)νΨ(n, u(cm) + Uo∗′)

∂ΨD/∂N
m = Ψn(N

m, (uD(C
m, Nm) + Uo∗′

P )/(Nm)ν)

−ΨU(N
m, (uD(C

m, Nm)+Uo∗′

P )/(Nm)ν)ν(Nm)−ν−1(uD(C
m, Nm)+Uo∗′

P )

= (No)ν−1Ψn(n, u(c
m) + Uo∗′)

−(No)νΨU(n, u(c
m) + Uo∗′)ν(Nm)−1(u(cm) + Uo∗′)

= (No)ν−1(Ψn(n, u(c
m) + Uo∗′)−ΨU(n, u(c

m) + Uo∗′)νn−1(u(cm) + Uo∗′))

∂ΨD/∂U = (Nm)−νΨU(N
m, (uD(C

m, Nm) + Uo∗′

P )/(Nm)ν)

= (No)ν(Nm)−νΨU(n, u(c
m) + Uo∗′) = n−νΨU(n, u(c

m) + Uo∗′)

λB = (Nm
t )ν−1n−ν

t−1λb

Intra-temporal allocation condition:
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Using this, equation (S.21) becomes:

β(No
t )

ν−1u′(cot ) = (nt−1)
−νΨU(N

m
t )ν−1u′(cmt ) + (Nm

t )ν−1λb,tn
−ν
t−1/FNt

βn1−ν
t−1 u

′(cot ) = (nt−1)
−νΨUu

′(cmt ) + λb,tn
−ν
t−1/FNt

βnt−1u
′(cot ) = ΨU(nt−1, Ut)u

′(cmt ) + λb,t/FNt

Using the firm’s optimality, this boils down to equation (8).

Euler Equations:

Equations (S.22) become:

(Nm
t )ν−1u′(cmt ) = β(No

t+1)
ν−1u′(cot+1)FKt+1

θ(Nm
t )ν−1u′(cmt ) = (Nm

t )ν−1(Ψn(nt, Ut+1)−ΨU(nt, Ut+1)νn
−1
t Ut+1)

+n−ν
t ΨU(nt, Ut+1)

∗[FNt+1(N
m
t+1)

ν−1u′(cmt+1) + (Nm
t+1)

ν−1(νu(cmt+1)− cmt+1u
′(cmt+1) + β(νu(cot+2)− cot+2u

′(cot+2))]

−λb,t+1(N
m
t+1)

ν−1n−ν
t bt+1

Dividing both sides by (Nm
t )ν−1 in both equations gives:

u′(cmt ) = βu′(cot+1)FKt+1

θu′(cmt ) = Ψn(nt, Ut+1)− n−1
t ΨU(nt, Ut+1)ν(u(c

m
t+1) + Uo∗

t+2)

+n−1
t ΨU(nt, Ut+1)[FNt+1u

′(cmt+1) + (νu(cmt+1)− cmt+1u
′(cmt+1) + β(νu(cot+2)− cot+2u

′(cot+2))]

−λb,t+1n
−1
t bt+1

The first equation boils down to equation 6. For the second, let’s cancel some terms:

θu′(cmt ) = Ψn(nt, Ut+1)− n−1
t ΨU(nt, Ut+1)νU

o∗
t+2

+n−1
t ΨU(nt, Ut+1)[(FNt+1 − cmt+1)u

′(cmt+1) + β(νu(cot+2)− cot+2u
′(cot+2))]

−λb,t+1n
−1
t bt+1
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Using the budget constraint when young gives:

θu′(cmt ) = Ψn(nt, Ut+1) + n−1
t ΨU(nt, Ut+1)

∗[(st+2 + θnt+1 − bt+1wt+1)u
′(cmt+1) + β(νu(cot+2)− cot+2u

′(cot+2))− νUo∗
t+2]

−λb,t+1n
−1
t bt+1

Using the equation we derived from equation (S.21)

θu′(cmt ) = Ψn(nt, Ut+1)− n−1
t (βntu

′(cot+1)− λb,t+1/FNt+1)bt+1wt+1

+n−1
t ΨU(nt, Ut+1)[(st+2 + θnt+1)u

′(cmt+1) + β(νu(cot+2)− cot+2u
′(cot+2))− νUo∗

t+2]

−λb,t+1n
−1
t bt+1

Now, clearly, the terms in λb,t+1 cancel out because either the constraint is not binding

and λb,t+1 = 0 or it is binding and bt+1 = bt+1.

θu′(cmt ) = Ψn(nt, Ut+1)− n−1
t βntu

′(cot+1)bt+1wt+1

+n−1
t ΨU(nt, Ut+1)[(st+2 + θnt+1)u

′(cmt+1) + β(νu(cot+2)− cot+2u
′(cot+2))− νUo∗

t+2]

We know, from the envelope condition, that

(1) ∂U∗
Pt+2/∂N

o = β∂uD(o, t+ 2)/∂No = (No
t+2)

ν−1β(νu(cot+2)− cot+2u
′(cot+2))

and, from the homogeneity of U∗
P , that

(2) ∂U∗
Pt+2/∂N

o
t+2 = νU∗

Pt+2/N
o
t+2−(∂U∗

Pt+2/∂Kt+2)Kt+2/N
o
t+2−(∂U∗

Pt+2/∂N
m
t+2)N

m
t+2/N

o
t+2

Or, using the FOCs for K and N ,

(2) ∂U∗
Pt+2/∂N

o
t+2 = νU∗

Pt+2/N
o
t+2 −

(
∂uD(Cm

t+1
,Nm

t+1
)

∂Cm

)
st+2 −

(
∂uD(Cm

t+1
,Nm

t+1
)

∂Cm

)
θnt+1

= (No
t+2)

ν−1[νUo∗
t+2 − u′(cmt+1)(st+2 + θnt+1)]

Hence, β(νu(cot+2)− cot+2u
′(cot+2)) = νUo∗

t+2 − u′(cmt+1)(st+2 + θnt+1).

That is, the second term on the RHS cancels out and we get equation (7).

Transversality condition:

Using the relationships in the beginning of the section and dividing by No
t , equa-

tion (S.23) becomes:

ζ t(No
t )

ν−1[u′(cot )FKt(Kt + θNm
t ) + (νu(cot )− cotu

′(cot ))N
o
t ] →

t→∞
0
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Dividing by (No
t )

ν ,

ζ t[u′(cot )FKt(st + θnt−1) + νu(cot )− cotu
′(cot )] →

t→∞
0

Using the budget constraint when old:

ζ t[u′((FKtkt − btFNt)nt−1)(FKtθ − btFNt)nt−1) + νu((FKtkt − btFNt)nt−1)] →
t→∞

0

That is, we get equation (11).

T.4 Detailed proof that U o∗
P is differentiable (Lemma S.4)

T.4.1 U ∗
P (KP , N

m
P , N o

P ;MP ) differentiable in KP > 0

Define

G(A) ≡ max
Cm,Co,B

{βU(Co, No
P ) + ΨD[N

m
P , U(Cm, Nm

P ) + U∗
P (x

∗
P (xP ;MP );M

′

P )]}

subject to

Cm ≤ MP (N
m
P +B)− θNm∗′

P (xP ;MP )−K∗′(xP ;MP ),

Co ≤ F (A,Nm
P )−MP (N

m
P +B),

B ≥ Nm
P b

Note that:

• for A = KP > 0, F (A) = U∗
P (KP , N

m
P , No

P ;MP ).

• (K∗′

P (xP ;MP ), N
m∗′

P (xP ;MP )) ∈ ΓP (A+ h,Nm
P , No

P ;MP ),

• (K∗′

P (xP ;MP ), N
m∗′

P (xP ;MP )) ∈ ΓP (A− h,Nm
P , No

P ;MP ) for h small enough

(since, at an optimum, Co > 0 because ∂uD(Co,No)
∂Co |Co=0

= ∞),

• G(A+ ε) ≤ U∗
P (KP + ε,Nm

P , No
P ;MP ), ∀ε ∈ [−h, h],

• since uD is strictly concave and ΨD weakly concave, F is strictly concave,

• since uD and ΨD are differentiable, F is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and Prescott

(1989), Theorem 4.10, p.84) to get that

∂Uo∗
P (xP ;MP )

∂KP
= G′(A) = β

∂uD(C
o, No

P )

∂Co
> 0 (T.2)
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T.4.2 U ∗
P (KP , N

m
P , N o

P ;MP ) differentiable in N o
P > 0

Define

G(A) ≡ max
Cm,Co,B

{βuD(C
o, A)+ΨD[N

m
P , U(Cm, Nm

P )+U∗
P (K

∗′

P (xP ;MP ), N
m∗′

P (xP ;MP ), N
m
P )]}

subject to

Cm ≤ MP (N
m
P +B)− θNm∗′

P (xP ;MP )−K∗′(xP ;MP ),

Co ≤ F (KP , N
m
P )−MP (N

m
P +B),

B ≥ Nm
P b

Note that:

• for A = No
P > 0, G(A) = U∗

P (KP , N
m
P , No

P ;MP ),

• since ΓP is independent on No
P ,

(K∗′

P (xP ;MP ), N
m∗′

D (xP ;MP )) ∈ ΓP (KP , N
m
P , A+ h;MP ),

(K∗′

P (xP ;MP ), N
m∗′

D (xP ;MP )) ∈ ΓP (KP , N
m
P , A− h;MP ),

• G(A+ ε) ≤ U∗
P (KP , N

m
P , No

P + ε;MP ), ∀ε ∈ [−h, h],

• since uD is strictly concave, G is strictly concave,

• since uD is differentiable, G is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and Prescott

(1989), Theorem 4.10, p.84) to get that

∂Uo∗
P (xP ;MP )

∂No
P

= G′(A) = β
∂uD(C

o, No
P )

∂No
> 0. (T.3)

T.4.3 U ∗
P (KP , N

m
P , N o

P ;MP ) differentiable in Nm
P > 0

Define

G(A) ≡ max
Cm,Co,B

{βuD(C
o, No

P )+ΨD[A/MP , uD(C
m, A/MP )+U∗

P (K
∗′

P (xP ;MP ), N
m∗′

P (xP ;MP ), A/MP )]}

subject to

Cm ≤ A+MPB − θNm∗′

P (xP ;MP )−K∗′(xP ;MP ),

Co ≤ F (KP , A/MP )− (A+MPB),

MPB ≥ Ab.

Case (i): MPB > Ab.

Note that:
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• for A = MPN
m
P > 0, G(A) = U∗

P (KP , N
m
P , No

P ;MP ).

• for h small enough, MPB > (A+ h)b and

(K∗′

P (xP ,MP ), N
m∗′

P (xP ,MP )) ∈ ΓP (KP , (A+ h)/MP , N
o
P ;MP ),

(since, at an optimum, Co > 0 because ∂uD(Co,No)
∂Co |Co=0

= ∞),

• for h small enough, MPB > (A+ h)b and

(K∗′

P (xP ,MP ), N
m∗′

P (xP ,MP )) ∈ ΓP (KP , (A+ h)/MP , N
o
P ;MP ),

(since, at an optimum, Co > 0 because ∂uD(Co,No)
∂Co |Co=0

= ∞),

• G(A + ε) ≤ U∗
P (KP , N

m
P + ε/MP , N

o
P ;MP ), ∀ε ∈ [−h, h],

• since uD is strictly concave and ΨD weakly concave, G is strictly concave,

• since uD and ΨD are differentiable in Nm and U∗
P differentiable in No, G is

differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and

Prescott (1989), Theorem 4.10, p.84) to get that

∂Uo∗
P (xP ;MP )

∂Nm
P

= G′(A)(dA/dNm
P ) = G′(A)MP (T.4)

= β
∂uD(C

o, No
P )

∂Co
(FN (KP , N

m
P )−MP )

+
∂ΨD

∂Nm
+

∂ΨD

∂U
[MP

∂uD(C
m, Nm

P )

∂Co
+

∂uD(C
m, Nm

P )

∂Nm
+ β

∂uD(C
o′ , No′

P )

∂No
].

Or, since FN(KP , N
m
P ) = MP

∂Uo∗
P (xP ;MP )

∂Nm
P

= G′(A)(dA/dNm
P ) = G′(A)MP (T.5)

=
∂ΨD

∂Nm
+

∂ΨD

∂U
[MP

∂uD(C
m, Nm

P )

∂Co
+

∂uD(C
m, Nm

P )

∂Nm
+ β

∂uD(C
o′ , No′

P )

∂No
] > 0.

Case (ii): MPB = Ab and λB > 0.

Note that:

• for A = MPN
m
P > 0, F (A) = U∗

D(KD, N
m
D , No

D; x̂).

• for h small enough, MPB = (A+ h)b, λB > 0 and

(K∗
P (xP , x̂), N

m∗
P (xP ;MP )) ∈ ΓP (KP , (A+ h)/MP ), N

o
P ;MP ),

(since, at an optimum, Co > 0 because ∂uD(Co,No)
∂Co |Co=0

= ∞),
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• for h small enough, (KD, (A− h)/w(x̂), No
D ∈ ACO (since ACO open) and

(K∗
D(xD, x̂), N

m∗
D (xD, x̂)) ∈ ΓD(KD, (A− h)/w(x̂), No

D; x̂),

(since, at an optimum, Cm > 0 because ∂uD(Cm,Nm)
∂Cm |Cm=0

= ∞),

• G(A + ε) ≤ U∗
P (KP , N

m
P + ε/MP , N

o
P ;MP ), ∀ε ∈ [−h, h],

• since uD is strictly concave and ΨD weakly concave, G is strictly concave,

• since uD and ΨD are differentiable in Nm and U∗
P differentiable in No, G is

differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and

Prescott (1989), Theorem 4.10, p.84) to get that

∂Uo∗
P (xP ;MP )

∂Nm
P

= G′(A)(dA/dNm
P ) = G′(A)MP (T.6)

= β
∂uD(C

o, No
P )

∂Co
(FN(KP , N

m
P )−MP (1 + b) +

∂ΨD

∂Nm

+
∂ΨD

∂U
[MP

∂uD(C
m, Nm

P )

∂Cm
(1 + b) +

∂uD(C
m, Nm

P )

∂Nm
+ β

∂uD(C
o′, No′

P )

∂No
]

Or, since MP = FN (KP , N
m
P )

∂Uo∗
P (xP ;MP )

∂Nm
P

=

[
∂ΨD

∂U

∂uD(C
m, Nm

P )

∂Cm
− β

∂uD(C
o, No

P )

∂Co

]
MP b (T.7)

+
∂ΨD

∂Nm
+

∂ΨD

∂U
[MP

∂uD(C
m, Nm

P )

∂Cm
+

∂uD(C
m, Nm

P )

∂Nm
+ β

∂uD(C
o′, No′

P )

∂No
] > 0

[Note that the first term is −λBb and the rest is the same as in case (i).]

Case (iii): MPB = Ab and λB = 0.

Note that:

• for A = MPN
m
P > 0, G(A) = U∗

P (KP , N
m
P , No

P ;MP ).

• for and h > 0, MPB = (A+ h)b and λB > 0, i.e. we are in case (ii),

• for and h < 0, MPB > (A− h)b, i.e. we are in case (i),

• G(A + ε) ≤ U∗
P (KP , N

m
P + ε/MP , N

o
P ;MP ), ∀ε ∈ [−h, h],

Hence, we need to show that

lim
h>0,h→0

∂Uo∗
P (xP ;MP )

∂Nm
P |ii

= lim
h<0,h→0

∂Uo∗
P (xP ;MP )

∂Nm
P |i

.
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Note that lim
h>0,h→0

∂Uo∗
P (xP ;MP )

∂Nm
P |ii

= − lim
h>0,h→0

λBb+
∂Uo∗

P (xP ;MP )

∂Nm
P |i

.

Since, λB → 0 as h → 0, we have
∂Uo∗

P
(xP ;MP )

∂Nm
P |iii

=
∂Uo∗

P
(xP ;MP )

∂Nm
P |i

.

T.5 Detailed proof of Proposition S.3

Proposition:

U∗
P is differentiable with respect to the parameter b and the Pseudo Planner’s policy

functions are continuous in b. Therefore, household policy functions and equilibrium

prices are continuous in b.

Proof.

Let’s add b as a state variable with law of motion b′ = b.

We want to show that U∗
P (xP ; b,MP ) differentiable in b.

To do so, define

F (A) ≡ max
Cm,Co,B

{βU(Co, No
P ) + ΨD[N

m
P , U(Cm, Nm

P ) + U∗
P (x

∗
P (xP , b))]}

subject to

Cm ≤ MP (N
m
P +B)− θNm∗(xP )−K∗(xP ),

Co +MP (N
m
P +B) ≤ F (KP , N

m
P ),

MPB ≥ A,

Define b∗ ∈ [−1, b] such that, given (KP , N
m
P , No

P ),

β
∂uD(o, xP , b

∗)

∂Co
=

∂ΨD(N
m
P , uD(m, xP , b

∗)

∂U
+ Uo∗

P (x∗
P (xP , b

∗)))
∂uD(m, xP , b

∗)

∂Cm

and define B∗(xP , FN(xP )) = Nm
P b∗.

That is, the constraint is just binding. b∗ exists if ∂ΨD/∂U > 0. If not, only case ii is

relevant.

i. Case 1: b < b∗.

Note that:

• for A = MPN
m
P b, F (A) = U∗

P (xD, b;MP ).

• for h small enough, xP s.t. b < b∗ still holds for (A± h)

• (K∗
P (xP , b,MP ), N

m∗
P (xP , b,MP )) feasible for (A± h)

(since intertemporal constraint is independent on (b.))

• F (A+ ε) ≤ U∗
P (xP , (A+ ε)/(MPN

m
P );MP ), ∀ε ∈ [−h, h]
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• Since uD is strictly concave and ΨD weakly concave, F is strictly concave.

• Since uD and ΨD are differentiable in C, F is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and

Prescott (1989) , Theorem 4.10, p.84) to get that

∂Uo∗
P (xP , b,MP )

∂b |case1

= F ′(A)(dA/db) = 0

ii. Case 2: b > b∗.

Note that:

• for A = MPN
m
P b, F (A) = U∗

P (xD, b;MP ).

• for h small enough, xP s.t. b > b∗ still holds for (A± h)

• (K∗
P (xP , b,MP ), N

m∗
P (xP , b,MP )) feasible for (A± h)

(since intertemporal constraint is independent on (b.))

• F (A+ ε) ≤ U∗
P (xP , (A+ ε)/(MPN

m
P );MP ), ∀ε ∈ [−h, h]

• Since uD is strictly concave and ΨD weakly concave, F is strictly concave.

• Since uD and ΨD are differentiable in C, F is differentiable.

Hence, we can apply the Benveniste-Scheinkman Theorem (Stokey, Lucas, and

Prescott (1989), Theorem 4.10, p.84) to get that

∂Uo∗
P (xP , b,MP )

∂b |case2

= F ′(A)(dA/db) = F ′(A)MPN
m
P (T.8)

= −β
∂uD(C

o(xP , x
∗
P (xP )), N

o
P )

∂Co
MPN

m
P

+
∂ΨD

∂U
∗
∂uD(C

m(xP , x
∗
P (xP )), N

o
P )

∂Cm
MPN

m
P

= MPN
m
P λB

iii. Case 3: b = b∗, i.e. xP ∈ AUCP

Note that:

• for A = MPN
m
P b, F (A) = U∗

P (xD, b;MP ).

• for and h > 0, we are back to case 1 for (A+ h) and
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• for and h < 0, we are back to case 2 for (A+ h).

• F (A+ ε) ≤ U∗
P (xP , (A+ ε)/(MPN

m
P );MP ), ∀ε ∈ [−h, h]

Hence, we need to show that

lim
h>0,h→0

∂Uo∗
P (xP , b,MP )

∂b |case1

= lim
h<0,h→0

∂Uo∗
P (xP , b,MP )

∂b |case2

Since, λB(xP , x
∗
P (xP ),MP ) → 0 as h → 0, we have

∂Uo∗
P (xP ,b,MP )

∂b |case3
= 0

Hence, U∗
P is differentiable in b. Thus U∗

P is continuous in b and by the Theorem of the

Maximum, the optimal policy functions, x∗
P are continuous in b. Therefore, using the

equivalence in Proposition S.5 equilibrium prices, w(x̂′(b)) = FN(x
∗
P (b)) and r(x̂′(b)) =

FK(x
∗
P (b)), are continuous in b.
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